Combinatorial formulation of Ising model revisited

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 3 Combinatorial formulation of Ising model revisited

In 1952, Kac and Ward developed a combinatorial formulation for the two dimensional Ising model which is another method of obtaining Onsager's famous formula for the free energy per site in the termodynamic limit of the model. Feynman gave an important contribution to this formulation conjecturing a crucial mathematical relation which completed Kac and Ward ideas. In this paper, the method of K...

متن کامل

An Agent Model Formulation of the Ising Model

The Ising model has proved an important test problem for many issues in computational physics. It is normally formulated in terms of a lattice of degrees of freedom which are updated in a carefully chosen Monte Carlo procedure. Numerical experiments normally involve equilibrating configurations and sampling independent configurations in the phase space of all the possible values for the degrees...

متن کامل

Combinatorial Bandits Revisited

This paper investigates stochastic and adversarial combinatorial multi-armed bandit problems. In the stochastic setting under semi-bandit feedback, we derive a problem-specific regret lower bound, and discuss its scaling with the dimension of the decision space. We propose ESCB, an algorithm that efficiently exploits the structure of the problem and provide a finite-time analysis of its regret....

متن کامل

The Combinatorial Nullstellensätze Revisited

We revisit and further explore the celebrated Combinatorial Nullstellensätze of N. Alon in several different directions. Terminology: Throughout this note, a “ring” is a commutative ring with multiplicative identity. A “domain” is a ring R such that for all a, b ∈ R \ {0}, ab ̸= 0. A ring R is “reduced” if for all x ∈ R and n ∈ Z, if x = 0 then x = 0.

متن کامل

The 3D Dimer and Ising problems revisited

We express the 3D Dimer partition function on a finite lattice as a linear combination of determinants of oriented adjacency matrices and the 3D Ising partition function as a linear combination of products over aperiodic closed walks. The methodology we use is embedding of cubic lattice on 2D surfaces of large genus. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Brasileira de Ensino de Física

سال: 2003

ISSN: 0102-4744

DOI: 10.1590/s0102-47442003000100007